a2 United States Patent

Hirokawa et al.

US009274776B2

US 9,274,776 B2
Mar. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(86)

87

(65)

(30)

Sep. 16, 2010

(1)
(52)

(58)

PRODUCT, METHOD, AND APPARATUS FOR
INSTALLING A SECOND PROGRAM BASED
ON A CALL FROM A FIRST PROGRAM

Inventors: Tomoya Hirokawa, Kanagawa (JP);
Yuuko Sugiura, Tokyo (JP); Xiaofeng
Han, Kanagawa (JP); Taku Ikawa,
Kanagawa (JP)

Assignee: RICOH COMPANY, LTD., Tokyo (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.
Appl. No.: 13/820,348
PCT Filed: Sep. 7,2011

PCT No.:

§371 (D),
(2), (4) Date:

PCT/IP2011/070910

Mar. 1, 2013

PCT Pub. No.: WO02012/036174
PCT Pub. Date: Mar. 22, 2012

Prior Publication Data

US 2013/0174141 Al Jul. 4, 2013
Foreign Application Priority Data

................................. 2010-208213

(P)

Int. CL.
GO6F 9/445
U.S. CL
CPC ... GOG6F 8/61 (2013.01); GOGF 8/62 (2013.01)
Field of Classification Search

None

See application file for complete search history.

(2006.01)

CALLBACK

153b

(56) References Cited

U.S. PATENT DOCUMENTS

5,721,824 A *

6,349,408 Bl
2004/0060045 Al
2005/0193388 Al*
2005/0193389 Al
2005/0226641 Al
2007/0008583 Al
2007/0064892 Al
2007/0124510 Al
2007/0174833 Al*
2007/0201655 Al*
2008/0320465 Al
2009/0172657 Al*
2009/0249328 Al*
2010/0005481 Al*

2/1998
2/2002
3/2004
9/2005
9/2005
10/2005
1/2007
3/2007
5/2007
7/2007
8/2007
12/2008
7/2009

709/203

Hind et al.

Hayes

Murphy et al.

Ando et al.

Araki

Ando

Ando

Im 717/174

Shenfield 379/201.01

Kinder et al.

Makelainen et al. 717/174

10/2009 Wetherell et al. 717/175
1/2010 Lewisetal.cceceennenn. 719/320

(Continued)

717/174

FOREIGN PATENT DOCUMENTS

GB 2466220 A
JP 2000-029713

6/2010
1/2000

(Continued)
OTHER PUBLICATIONS
Hall et al., Evaluating software deployment languages and schem: an

experience report, International Conference on Software Mainte-
nance, Nov. 16-20, 1998, pp. 177-185.*

(Continued)

Primary Examiner — Anil Khatri
Assistant Examiner — Timothy Duncan
(74) Attorney, Agent, or Firm — IPUSA, PLLC

(57) ABSTRACT

An install method executed by an apparatus, including receiv-
ing a call from a first program when the first program is
activated; and installing a second program that is used by the
first program, in response to the call.

13 Claims, 11 Drawing Sheets

211

INSTALL/
UNINSTALL
PROXY LIBRARY
156b

JSDK
APPLICATION

INSTALL/
UNINSTALL
1552 1551

CALLBACK
CONTROL UNIT

JSDK
MANAGEMENT fa---
UNIT]

CSDK
APPLICATION

UM | :

152

154

APPLICATION MANAGEMENT

510
SCREEN IMAGE

US 9,274,776 B2

Page 2
(56) References Cited Jp 2006-271005 10/2006
Jp 2006-311590 11/2006
U.S. PATENT DOCUMENTS JP 2007-048270 2/2007
Jp 2007-049677 2/2007
2010/0058482 Al 3/2010 Nagumo et al. P 2007-109218 4/2007
2010/0306759 Al* 12/2010 Kohleretal. 717/174 P 2007-279959 10/2007
2011/0041125 Al 2/2011 Sugiura P 2008507775 32008
2011/0055825 Al 3/2011 Tkawa
2011/0066886 Al 3/2011 Sugiura et al. WO 2006012533 2/2006
2011/0066972 Al 3/2011 Sugiura
2011/0067117 Al 3/2011 Nagumo et al. OTHER PUBLICATIONS
2011/0271273 Al* 11/2011 Dumaisetal. 717/175
2011/0288932 Al* 1172011 Marksetal. ..o 705/14.49 Extended European search report dated Feb. 26, 2014.
FOREIGN PATENT DOCUMENTS Japanese Office Action dated Jul. 15, 2014.
Jp 2004-118237 4/2004

Jp 2005-269619 9/2005 * cited by examiner

US 9,274,776 B2

Sheet 1 of 11

Mar. 1, 2016

U.S. Patent

ayvo

og— L 98

1071S
ayvo ds

Tl

JOV4H3LNI
AHOMLIN

91~

WIdOW 4ILNIMd 4INNVOS
N gL 2L
aaH WoY VY
P gL L
WVHAN Ndo
s YITIOHLNOD e
T
7aNVd
SNOILYY3dO
0l m—\\

US 9,274,776 B2

Sheet 2 of 11

Mar. 1, 2016

U.S. Patent

SO
651
JOIAYIS 104LNOD
8sl
SVA
To1 ! INO 1 LVO1TddV]| [NO 1 1VD11ddV| INO 11D 1ddV| [NO T LvD 1 1ddv| |
“ XV Ad0D INT¥d ¥INNVOS | |
WAP m |
NOIL1YD1ddV “ |
ys1 3050 VS e med asd e |
T m L Ll sNouvonaavawawwis T |
YOVETIVO Mase €sl ¢sl ISk
2561 1GG|
WHO41V1d Masr
GGl
m NOILVO1TddV |
| . Nasp m
e T SNLYHYddY DNINHOH IDVNI
w 2ol

US 9,274,776 B2

Sheet 3 of 11

Mar. 1, 2016

U.S. Patent

JOVII N3340S
INIWIOVNVI NOLLVII'lddV

016G !
A 4
Attt » SvS
| 7T 1
m vGl v A g
i WAP M |
i | ... |NOLLYOIddV| |NOLLVOIddY| |
boeeees > LINN INJWIDVYNVI MASr m MAsO MAso |
1551 m m
S — i p—— w
| NOILVYOIlddV| [NOLLYOIddV| €6l
m wasr Masr m
SO Y- _

U.S. Patent Mar. 1, 2016 Sheet 4 of 11 US 9,274,776 B2

FIG.4

o = = = = e e e e e e e e - B e = =

SDK APPLICATION

JSDK FILE

/_/156a
JSDK APPLICATION

__156Pa

JSDK ATTRIBUTE FILE

/_/153Fa

CSDK FILE

/_/153a
CSDK APPLICATION

CSDK ATTRIBUTE FILE

U.S. Patent Mar. 1, 2016 Sheet 5 of 11 US 9,274,776 B2
FIG.5
X MANAGEMENT JSDK SAS
User lJNrT AHDPLJCDA11()N
| JSDK APPLICATION INSTALL REQUEST () |
8101 || JSDK APPLIGATION INSTALL PROGESS()
-s102 | !
,$103 i

JSDK APPLICAUON ACTIVATIONR

EQUEST()

—s121

<

™S122

-s124

L

CSDK APPLICATION UNINSTAL

L REQUEST ()

JSDK APPLICATION UNINSTALL REQUEST ()
JSDK APPLICATION ABORT REQUEST ()

<5104 || APPLICATION ACTIVATION REQUEST()
~s105 JSDK APPLICATION
ACTIVATION PROCESS()
]T_ksms 5
P e
N ; E i ggBEICA 0
5 CSDK APPLICATION INSTALL REQUEST () B INSTALLTI N
E i SS111 PROCESS()
! |]__:lwsnz
i | S113
R e BT Tommmmmmmmsoomoe- b

JSDK APPLICATION

S123

FLQ‘

JSDK APPLICATIION UNINSTALL P

BORT PROCESS()

ROCESS ()

CSDK
APPLICATION

_+ UNINSTALL

i

S131

PROCESS()

-S132

US 9,274,776 B2

Sheet 6 of 11

Mar. 1, 2016

U.S. Patent

3114 31NAIH 1LY AXOdd

OLIe—~H

H3AVT JALLVN

Nig—H

H3IAVT OIIVINIAVYHL A3HILSIOFY) VAVP

AdvHEl AXOdd

e die—
| AUVHEIT AXOYd
e T

3114 ¥ASO

-

Y

q4e61 7
714 ILNENLLY MASP

qdogL”
NOLLYOIddV Masr

q0G1
3714 Mase

\’\
4951 NOILVOIlddV XAS

q08"

90I4

U.S. Patent Mar. 1, 2016 Sheet 7 of 11 US 9,274,776 B2

FIG.7
INSTALL/ 211
UNINSTALL
PROXY LIBRARY
A
__156b
JSDK
CALLBAGCK APPLICATION
INSTALL/
| 153b UNINSTALL
1552 JSD§J1551
CALLBACK
CSDK CONTROL UNIT MANAGEMENT < 5
APPLICATION |
JVM |
1 “TN154 i
152 ;
SAS oo i
A
v r—/510

APPLICATION MANAGEMENT
SCREEN IMAGE

U.S. Patent Mar. 1, 2016 Sheet 8 of 11 US 9,274,776 B2

FIG.8
_155 _156b 211
x JSDK JSDK PROXY

User PLATFORM APPLICATION LIBRARY

JSDK APPLICATION INSTALL REQU'EST()
5201 JSDK APPLICATION INSTALL PROCESS ()

r-S202

JSDK APPLICATION ACTIVATION REQUEST ()
~s204 || APPLICATION ACTIVATION REQUEST ()

5205 AGTIVATION PROGESS ()
Y ey
CALL PROXY LIBRARY

\

S207
APPLICATION UNINSTALL CALLBACK REGISTRATION()
~S208 CSDK INSTALL

"\8209 PROCESS()

|'\13210
S211

R ——

-

JSDK APPLICATION UNINSTALL REQUEST () -
<s721]| JSDK APPLICATION ABORT REQUEST ()

<s222 || JSDK APPLICATION
ABORT PROCESS ()
I—_L»szzs
S LT LR LT ,

UNINSTALL PROCESS()

I—\,3224 JSDK APPLICATION gggEICATION
UNINSTALL REPORT () ' UNINSTALL

JSDK APPLICATION

g225 PROCESS()

h-s226
82217

)
1
)
1
1
1
)
]
1
)
]
)
]
)
1
1

RN U [RGB

-——A

U.S. Patent Mar. 1, 2016 Sheet 9 of 11 US 9,274,776 B2

FIG.9

? /8301

DETERMINE INSTALL
STATE OF CSDK
APPLICATION THAT
IS INSTALL TARGET

[INSTALLED] /k [NOT INSTALLED]
~

/8302

DETERMINE CSDK
FILE NAME
CORRESPONDING TO
INSTALL DESTINATION

[NG]

[OK]
__/S303

DETERMINE WHETHER
CSDK APPLICATION
CAN BE INSTALLED

[NG]

[OK]
5304

INSTALL PROCESS

/_/8305

y
ABNORMAL END [«

[NG]

[OK]

US 9,274,776 B2

Sheet 10 of 11

Mar. 1, 2016

U.S. Patent

£00ddenypso qqqq 1009999

¢ooddeypso eeee Zooeeee

|0odde™pso eeee |ooeeee
JAVN 3114 MASO d3MHIINIAI NOILYOIlddY JAVN 13Ad0ON

01 OI4

U.S. Patent Mar. 1, 2016

[NG]

Sheet 11 of 11 US 9,274,776 B2

FIG.11

T /8401

DETERMINE WHETHER
CSDK APPLICATION
NEEDS TO BE
UNINSTALLED

__S403

ABNORMAL END

[OK] /8402

UNINSTALL CSDK
APPLICATION

[NG]

[OK]

US 9,274,776 B2

1
PRODUCT, METHOD, AND APPARATUS FOR
INSTALLING A SECOND PROGRAM BASED
ON A CALL FROM A FIRST PROGRAM

TECHNICAL FIELD

The present invention relates to an install method and an
apparatus, and more particularly to an install method and an
apparatus for executing programs in the apparatus.

BACKGROUND ART

Conventionally, there are image forming apparatuses to
which application programs can be added as plug-ins after
shipment. For example, applications developed in C language
(hereinafter, “C applications™) and applications developed in
Java (registered trademark) (hereinafter, “J applications™) can
be installed in the image forming apparatus described in
patent document 1.

However, the platform for C applications and the platform
for J applications are different. Specifically, the platform for
J applications is formed by providing, on a platform for C
applications, a platform provided with API (Application Pro-
gram Interface) for Java (registered trademark) (the JSDK
platform in patent document 1).

The model dependence of the JSDK platform is signifi-
cantly lower than that of the platform for C applications. That
is to say, the API of the JSDK platform is leveled out to be
applicable to various model types. From the viewpoint of the
developer of applications, it is more advantageous to develop
applications as J applications. This is because in the case of J
applications, the necessity of changing source codes for
respective model types is low, and therefore development
costs can be reduced.

However, the function range of API provided by JSDK
platforms is narrower than that of platforms for C applica-
tions. That is to say, the number of functions that can be
implemented by genuine J applications is less than that of
genuine C applications. A genuine J application means a J
application that is configured with only program modules that
operate on a JSDK platform.

Thus, if a function cannot be implemented only by a J
application, the function needs to be installed as a C applica-
tion. In this case, a package including both a J application
module and a C application module is sold as one application.

An application including both a J application and a C
application may appear to be a single application to the user,
but this application is perceived as two applications by an
image forming apparatus that cannot recognize an application
having such a configuration (i.e., a configuration including
both a J application and a C application). Thus, the user needs
to perform an install operation two times (the user needs to
give an instruction to execute an install operation two times).

In such an image forming apparatus, by correcting the
install mechanism of applications in consideration of appli-
cations having the above configuration, it is technically pos-
sible to execute both a process of installing a J application and
a process of installing a C application by a single install
instruction.

However, image forming apparatuses that cannot recog-
nize an application including both a I application and a C
application are already vastly commercially available and are
being used by end users. It would require large amounts of
cost and work to apply the above-described corrections to
these image forming apparatuses.

10

15

20

25

30

35

40

45

50

55

60

2

Patent Document 1: Japanese Laid-Open Patent Application
No. 2007-49677

DISCLOSURE OF INVENTION

The present invention has been made in view of the above-
described problems, and it is an object of at least one embodi-
ment of the present invention to provide an install method and
an apparatus with which operations of installing programs
can be simplified.

An aspect of the present invention provides a non-transi-
tory computer-readable storage medium with an executable
install program stored therein, wherein the install program
instructs a processor of an apparatus to execute receiving a
call from a first program when the first program is activated;
and installing a second program that is used by the first
program, in response to the call.

An aspect of the present invention provides an install
method executed by an apparatus, the install method includ-
ing receiving a call from a first program when the first pro-
gram is activated; and installing a second program that is used
by the first program, in response to the call.

An aspect of the present invention provides an apparatus
including a receiving unit configured to receive a call from a
first program when the first program is activated; and a first
installing unit configured to install a second program that is
used by the first program, in response to the call.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an example of a hardware configuration
of an image forming apparatus according to an embodiment
of the present invention;

FIG. 2 illustrates a software configuration of the image
forming apparatus according to an embodiment of the present
invention;

FIG. 3 illustrates an example of a management mechanism
of JISDK applications and CSDK applications;

FIG. 4 illustrates an example of a configuration of an SDK
application set as an install target according to a first embodi-
ment;

FIG. 5 is a sequence diagram for describing an example of
processing procedures of an install process and an uninstall
process of SDK applications according to the first embodi-
ment;

FIG. 6 illustrates an example of a configuration of an SDK
application set as an install target according to a second
embodiment;

FIG. 7 illustrates an example of an install mechanism rel-
evant to the SDK application including a proxy library;

FIG. 8 is a sequence diagram for describing an example of
processing procedures of an install process and an uninstall
process of SDK applications according to a second embodi-
ment;

FIG. 9 is for describing an example of processing proce-
dures of a process of installing a CSDK application per-
formed by the proxy library;

FIG. 10 indicates an example of information recorded in a
proxy attribute file; and

FIG. 11 is for describing an example of processing proce-
dures of a process of uninstalling the CSDK application per-
formed by the proxy library.

BEST MODE FOR CARRYING OUT THE
INVENTION

Embodiments of the present invention are described below
with reference to the accompanying drawings. FIG. 1 illus-

US 9,274,776 B2

3

trates an example of a hardware configuration of an image
forming apparatus 10 according to an embodiment of the
present invention. As shown in FIG. 1, the image forming
apparatus 10 includes hardware elements such as a controller
11, a scanner 12, a printer 13, a modem 14, an operations
panel 15, a network interface 16, and an SD card slot 17.

The controller 11 includes a CPU 111, aRAM 112, aROM
113, aHDD 114 and an NVRAM 115. The ROM 113 records
various programs and data used by the programs. The RAM
112 is used as a storage area for loading programs and a work
area for the loaded programs. The CPU 111 processes the
programs loaded in the RAM 112 to implement various func-
tions. The HDD 114 records programs and various data items
used by the programs. The NVRAM 115 records various
setting information items.

The scanner 12 is a hardware element for scanning an
original to obtain image data (image scanning unit). The
printer 13 is a hardware element for printing data onto a sheet
(printing unit). The modem 14 is a hardware element for
connecting the image forming apparatus 10 to a telephone
line to transmit and receive image data by fax communica-
tions. The operations panel 15 is a hardware element includ-
ing an input unit such as a buttons for receiving input from a
user, and a display unit such as a liquid crystal panel. The
network interface 16 is a hardware element for connecting the
image forming apparatus 10 to a network (wired or wireless)
such as LAN. The SD card slot 17 is used for reading pro-
grams recorded in an SD card 80. In the image forming
apparatus 10, in addition to programs recorded in the ROM
113, programs recorded in the SD card 80 may also be loaded
and executed in the RAM 112.

FIG. 2 illustrates a software configuration of the image
forming apparatus 10 according to an embodiment of the
present invention. As shown in FIG. 2, the image forming
apparatus 10 includes standard applications 151, SAS (SDK
application service) 152, a CSDK application 153, JVM 154,
a JSDK platform 155, JSDK applications 156, a VAS (Virtual
Application Service) 157, a control service 158, and an OS
159.

The standard applications 151 are an assembly of applica-
tions that are installed as standard applications (with which
the image forming apparatus 10 is shipped) in the image
forming apparatus 10. Examples shown in FIG. 2 are a scan-
ner application 1511, a print application 1512, a copy appli-
cation 1513, and a FAX application 1514. The scanner appli-
cation 1511 executes scan jobs. The print application 1512
executes print jobs. The copy application 1513 executes copy
jobs. The FAX application 1514 executes fax transmission
jobs or fax reception jobs.

The control service 158 is a group of software modules for
providing functions for controlling various hardware
resources to upper-level applications, and executing basic
functions of the image forming apparatus 10.

The VAS 157 is for wrapping the interface of the control
service 158, and for absorbing the difference in the interface
that arises as the control service 158 is upgraded. This ensures
that programs operated on the VAS 157 (particularly the
CSDK application 153) are compatible with various versions
of the control service 158.

The CSDK application 153 and the JSDK application 156
are examples of SDK applications. An SDK application is
developed as a plug-in to the image forming apparatus 10 for
the purpose of expanding functions of the image forming
apparatus 10. The image forming apparatus 10 is provided
with public APIs (Application Program Interface) dedicated
to SDK applications. One API is in C language provided by
the VAS 157. The other APl is in Java (registered trademark)

5

10

15

20

25

30

35

40

45

55

60

4

language provided by the JSDK platform 155 described
below. An SDK application created by using the API in C
language is referred to as the CSDK application 153. An SDK
application created by using the API in Java (registered trade-
mark) language is referred to as the JISDK application 156. In
FIG. 2, the CSDK application 153 is expressed by one block
(rectangle), but there may be plural CSDK applications 153
installed in a single image forming apparatus 10.

The JVM 154 is a so-called Java (registered trademark)
virtual machine, which is executed by interpreting instruc-
tions defined by Java (registered trademark) byte codes. Inthe
present embodiment, the JVM 154 is installed as one of the
CSDK applications.

The SAS 152 manages the life cycle of the CSDK appli-
cation 153. For example, the SAS 152 controls an install
process, an activation process, an abort process, and an unin-
stall process that are performed on the CSDK application 153.

The JSDK platform 155 provides an execution environ-
ment for the JSDK applications 156. That is to say, the JSDK
platform 155 provides an API in Java (registered trademark)
language to the JSDK applications 156. The JSDK platform
155 includes a JSDK management unit 1551 and a callback
controlunit 1552. The JISDK management unit 1551 manages
the life cycle of the JSDK applications 156. For example, the
JSDK management unit 1551 controls an install process, an
activation process, an abort process, and an uninstall process
that are performed on the JSDK applications 156. The JSDK
management unit 1551 may be installed as one of the JSDK
applications 156. The callback control unit 1552 controls a
callback process. Callback corresponds to so-called callback
in programming. That is to say, callback is a mechanism for
generating callback to a corresponding report destination in
response to an event being generated, by registering in
advance the types of events and report destinations (callback
function).

The OS 159 is a so-called operating system. The respective
software items in the image forming apparatus 10 operate as
processes or threads on the OS 159.

FIG. 3 illustrates an example of a management mechanism
of JSDK applications 156 and CSDK applications 153. As
shown in FIG. 3, the life cycles of the CSDK applications 153
are managed by the SAS 152. The respective CSDK applica-
tions 153 are activated as separate processes. The JVM 154 is
one of the CSDK applications 153. Therefore, the JVM 154 is
also activated as one process by the SAS 152.

Meanwhile, the life cycles of the JSDK applications 156
are managed by the JSDK management unit 1551. The
respective JSDK applications 156 are activated as separate
threads on processes of the JVM 154.

As described above, the CSDK applications 153 and the
JSDK applications 156 have different management mecha-
nisms because these applications have been developed in
different languages. For example, if the SAS 152 attempts to
directly control the JSDK application 156, the SAS 152 needs
to call an interface in Java (registered trademark) language
from source codes in C language. In this case, high-level
programming techniques are necessary, and the processing
contents are cumbersome and complicated. Furthermore, the
CSDK application 153 is executed as a process, while the
JSDK application 156 is executed as a thread. Also consider-
ing this difference in the execution format, it is advantageous
in terms of simplifying the management mechanism to pro-
vide separate application management mechanisms for the
CSDK applications 153 and the JSDK applications 156.

However, the user interfaces for the CSDK applications
153 and the JSDK application 156 are combined. Such a
combined user interface is used by a user to instruct processes

US 9,274,776 B2

5

for installing, uninstalling, activating, and aborting applica-
tions. Specifically, an application management screen image
510 for providing the user interface is displayed on the opera-
tions panel 15 in an integrated fashion. When the CSDK
application 153 is set as an operation target in the application
management screen image 510, the SAS 152 directly
executes a process in response to the operated instruction (for
example, an install process, an uninstall process, an activation
process, and an abort process). Meanwhile, when the JSDK
application 156 is set as an operation target in the application
management screen image 510, the SAS 152 reports an
operation instruction to the JSDK management unit 1551. In
response to a report from the SAS 152, the JSDK manage-
ment unit 1551 executes a process in response to the operated
instruction (for example, an install process, an uninstall pro-
cess, an activation process, and an abort process).

Interactions between the SAS 152 and the JSDK manage-
ment unit 1551 may be performed according a protocol that
can be easily used regardless of the development language,
such as HTTP (HyperText Transfer Protocol) and SOAP
(Simple Object Access Protocol). Accordingly, there is no
need to call an interface in Java (registered trademark) lan-
guage from source codes in C language, and therefore there is
no need for complicated processing contents.

A description is given of a configuration example of an
SDK application that is an install target, according to a first
embodiment. In the first embodiment, an SDK application is
set as an install target, in which the CSDK application 153 and
the JISDK application 156 are simply mixed. “Simply” means
that the SDK application in which the CSDK application 153
and the JSDK application 156 are mixed is not created for the
purpose of installing the SDK application as a single SDK
application.

FIG. 4 illustrates an example of a configuration of an SDK
application set as an install target according to the first
embodiment.

As shown in FIG. 4, an SDK application Al includes a
JSDK file 156Fa and a CSDK file 153Fa. The JSDK file
156Fa is a single archive file (for example, a JAR (Java
(registered trademark) archive) file) including a JSDK appli-
cation 156a and a JSDK attribute file 156Pa. The JSDK
application 1564 is an entity of the JSDK application 156 in
the SDK application Al. The JSDK attribute file 156Pa
includes configuration information of the JSDK file 156Fa
and attribute information relevant to the JSDK application
156a (for example, an identifier (application identifier) of the
JSDK application 156a).

The CSDK file 153Fa is a single archive file including a
CSDK application 153a and a CSDK attribute file 153Pa. The
CSDK application 153a is an entity of the CSDK application
153 in the SDK application Al. The CSDK attribute file
153Pa includes configuration information of the CSDK file
153Fa and attribute information relevant to the CSDK appli-
cation 153a (for example, an identifier (application identifier)
of the CSDK application 153a).

The JSDK application 1564 is the JSDK application 156
that implements predetermined functions by using the CSDK
application 153qa. That is to say, in the SDK application A1,
the CSDK application 153a is positioned as a single program
module. The JSDK application 1564 may call a method of the
CSDK application 153a by using, for example, JNI (Java
(registered trademark) Native Interface).

In FIG. 4, the SDK application Al is recorded in the SD
card 80a. In this case, the JSDK file 156Fa and the CSDK file
153Fa are recorded in the SD card 80a as separate files. That
is to say, in FIG. 4, the rectangle formed with dashed lines

10

15

20

25

30

35

40

45

50

55

60

65

6

indicating the SDK application A1 corresponds to the logical
and conceptual range of a single SDK application Al.

The following describes processing procedures for install-
ing and uninstalling the SDK application A1 of FIG. 4 in the
image forming apparatus 10.

FIG. 5 is a sequence diagram for describing an example of
processing procedures of an install process and an uninstall
process of SDK applications according to the first embodi-
ment. Before starting the process of FI1G. 5, the SD card 80a
is inserted in the SD card slot 17. A main screen image, which
is one of the application management screen images 510, is
displayed on the operations panel 15 by the SAS 152.

In the main screen image, when the user selects to execute
install, the SAS 152 causes the operations panel 15 to display
an install screen image. The install screen image includes a
selection list of SDK applications, in which the JISDK appli-
cation 1564 and the CSDK application 1534 are indicated in
separate rows. The selection list is created based on the JISDK
attribute file 156Pa included in the JSDK file 156Fa in the SD
card 80a, and the CSDK attribute file 153Pa included in the
CSDK file 153Fa in the SD card 80a. The install screen image
is one of the application management screen images 510.

In step S101, the user selects a row including the JSDK
application 1564 in the install screen image, and enters an
instruction to execute install in the install screen image. The
instruction to execute install is reported to the JSDK manage-
ment unit 1551 via the SAS 152. In FIG. 5, the route via the
SAS 152 is not shown.

Next, the JSDK management unit 1551 executes an install
process of the JSDK application 156a (step S102). Specifi-
cally, the JSDK file 156Fa is read from the SD card 80a and
expanded. Furthermore, an entry including the application
identifier of the JSDK application 1564 is added to the install
information of the JSDK applications 156 managed by the
JSDK platform 155 with the use of a predetermined recording
medium (list information of installed JSDK applications
156). Furthermore, the JSDK application 156a and the JSDK
attribute file 156Pa are copied to a predetermined storage area
(hereinafter, “JSDK install area”). When the install process
ends, the JSDK management unit 1551 sends a response to
the SAS 152 indicating that the install process has ended.
According to this response, the fact that the install process has
ended is reported to the user by the SAS 152 via the install
screen image (step S103).

Next, when the user selects to execute activation in the
main screen image, the SAS 152 causes the operations panel
15 to display an activation screen image. The activation
screen image includes a list of the CSDK applications 153 and
the JSDK applications 156 included in install information of
the CSDK applications 153 (list information of installed
CSDK applications 153) or install information of the JSDK
applications 156, which are managed with the use of the
NVRAM 115. The SAS 152 acquires install information of
the JSDK application 156 by referring to the JSDK manage-
ment unit 1551. The activation screen image is one of the
application management screen images 510.

The user selects a row including the JSDK application
1564 included in the activation screen image, and enters an
activation instruction in the activation screen image (step
S104). The activation instruction is reported to the JSDK
management unit 1551 via the SAS 152.

Next, the JSDK management unit 1551 enters a request to
activate the JSDK application 1564 (step S105). In response
to the activation request, the JSDK application 156« is acti-
vated as a thread on the JVM 154 (step S106).

Next, in response to an instruction from the user, the SAS
152 causes the operations panel 15 to display the install

US 9,274,776 B2

7

screen image once again. The user selects a row including
CSDK application 153« in the install screen image, and enters
an instruction to execute install in the install screen image
(step S111). Next, the SAS 152 executes the process of
installing the CSDK application 153a (step S112). Specifi-
cally, the CSDK file 153Fa is read from the SD card 80a and
expanded. Furthermore, an entry including the application
identifier of the CSDK application 153a is added to the install
information of the CSDK applications 153 managed with the
use of the NVRAM 115. Furthermore, the CSDK application
153a and the CSDK attribute file 153Pa are copied to a
predetermined storage area (hereinafter, “CSDK install
area”).

When the install process ends, the SAS 152 sends a report
indicating that the install process has ended to the user via the
install screen image (step S113).

When the SDK application A1 becomes unnecessary, the
user selects to execute uninstall in the main screen image. The
SAS 152 causes the operations panel 15 to display an unin-
stall screen image. The uninstall screen image includes a list
of'the CSDK applications 153 and the JSDK applications 156
included in the install information of the CSDK applications
153 or the install information of the JSDK applications 156.
The uninstall screen image is one of the application manage-
ment screen images 510.

The user selects a row of the JSDK application 1564
included in the uninstall screen image, and enters an uninstall
instruction via the uninstall screen image (step S121). The
uninstall instruction is reported to the JSDK management unit
1551 via the SAS 152.

In response to the uninstall instruction, the JSDK manage-
ment unit 1551 enters a request to abort the JSDK application
156a (step S122). In response to the abort request, the thread
relevant to the JSDK application 1564 ends (step S123). Next,
the JSDK management unit 1551 executes a process to unin-
stall the JSDK application 156a (step S124). For example, the
entry of'the JSDK application 1564 is deleted from the install
information of the JSDK applications 156 managed by the
JSDK platform 155. Furthermore, the JSDK application 1564
and the JSDK attribute file 156Pa that have been copied to the
JSDK install area are deleted.

Next, the user selects a row including the CSDK applica-
tion 1534 in the uninstall screen image, and enters an instruc-
tion to execute uninstall in the uninstall screen image (step
S131). In response to the uninstall instruction, the SAS 152
executes a process to uninstall the CSDK application 153«
(step S132). For example, an entry relevant to the CSDK
application 153« is deleted from the install information of the
CSDK applications 153 that is managed with the use of the
NVRAM 115. Furthermore, the CSDK application 153a and
the CSDK attribute file 153Pa that have been copied to the
CSDK install area are deleted.

As described above, in the first embodiment, although
there is only a single SDK application Al, the install opera-
tion and the uninstall operation respectively require two steps
(i.e., steps S101 and S111, and steps S121 and S131).

In order to address such redundancy, in a second embodi-
ment, the SDK application is configured as indicated in FI1G.
6.

FIG. 6 illustrates an example of a configuration of an SDK
application set as an install target according to the second
embodiment.

As shown in FIG. 6, an SD card 804 has one JSDK file
156Fb recorded as an SDK application B1. The JSDK file
156FD is an archive file (for example, a JAR file) including a
JSDK application 1565, a JISDK attribute file 156Pb, a CSDK
file 153FDb, a proxy library 211, and a proxy attribute file 211P.

25

30

35

40

45

55

8

The JSDK application 1565 is an entity of the JSDK applica-
tion 156 in the SDK application B1. The JSDK attribute file
156Pb includes configuration information of the JSDK file
156Fb and attribute information relevant to the JSDK appli-
cation 1565 (for example, an application identifier of the
JSDK application 1565).

The CSDK file 153FDb is an archive file having a configu-
ration similar to that of the CSDK file 153Fa shown in FIG. 4.
That is to say, the CSDK file 153Fb includes a CSDK appli-
cation 1535 (not shown) that is an entity of the CSDK appli-
cation 153 in the SDK application B1 and a CSDK attribute
file 153Pb (not shown) including configuration information
of the CSDK file 153Fb and attribute information relevant to
the CSDK application 1536 (for example, an application
identifier of the CSDK application 1535).

As described above, in the second embodiment, the CSDK
application 1535 is stored in the JAR file of the JSDK appli-
cation 15654.

In the second embodiment, the dependency relationship
between the JSDK application 1565 and the CSDK applica-
tion 15354 is the same as the dependency relationship between
the JSDK application 1564 and the CSDK application 1534 in
the first embodiment. That is to say, the JSDK application
1564 uses the CSDK application 1535 as a single program
module.

The proxy library 211 is a program module (library) that
executes an install process and an uninstall process on the
CSDK application 15354. As shown in FIG. 6, the proxy
library 211 includes a Java (registered trademark) layer 2115
and a native layer 211c¢. The Java (registered trademark) layer
211j is for providing an interface (method, etc.) for the JSDK
application 1565, and is implemented in Java (registered
trademark) language. In the native layer 211¢, algorithms of
the install process and the uninstall process are implemented
in C language. That is to say, in the proxy library 211, essen-
tial functions are implemented in C language, and the parts
that are implemented in C language are wrapped by Java
(registered trademark). The essential functions of the proxy
library 211 are implemented in C language for the following
reason. That is, the proxy library 211 needs to access the
NVRAM 115, but it is difficult to implement the function of
accessing the NVRAM 115 in Java (registered trademark)
language. Furthermore, the proxy library 211 includes the
Java (registered trademark) layer 211; for the purpose of
facilitating the operation of using (calling) the proxy library
211 performed by the JSDK application 1565. For example,
the proxy library 211 is included in the JSDK application
15654 as a single JAR file.

The proxy attribute file 211P includes information neces-
sary for the operation of installing the CSDK application
1535 performed by the proxy library 211.

A description is given of an install mechanism of the image
forming apparatus 10, relevant to the SDK application includ-
ing the proxy library 211. FIG. 7 illustrates an example of an
install mechanism relevant to the SDK application including
the proxy library 211.

As shown in FIG. 7, the operation of installing the JSDK
application 1565 is performed in the same manner as that of
the first embodiment. That is to say, an instruction entered in
the application management screen image 510 is reported
from the SAS 152 to the JSDK management unit 1551. In
response to the reported instruction, the JSDK management
unit 1551 installs or uninstalls the JSDK application 1565.

The installed JSDK application 1565 calls the proxy
library 211 when activated. In response to the call, the proxy
library 211 executes the process of installing the CSDK appli-
cation 1535 on behalf of the SAS 152.

US 9,274,776 B2

9

When the JSDK application 15654 is uninstalled, this effect
is called back (reported) to the proxy library 211 by the
callback control unit 1552. The proxy library 211 detects that
the JSDK application 1565 has been uninstalled based on the
callback. In response to the uninstall being detected, the
proxy library 211 executes the process of uninstalling the
CSDK application 1535 on behalf of the SAS 152.

As described above, in the SDK application B1 including
the proxy library 211, the proxy library 211 performs the
install process and the uninstall process on the CSDK appli-
cation 1535, on behalf of the SAS 152.

A description is given of processing procedures of install-
ing and uninstalling the SDK application B1 shown in FIG. 6
in the image forming apparatus 10.

FIG. 8 is a sequence diagram for describing an example of
processing procedures of an install process and an uninstall
process of SDK applications according to the second embodi-
ment. Before starting the process of FIG. 8, the SD card 805
of FIG. 6 is inserted in the SD card slot 17. A main screen
image, which is one of the application management screen
images 510, is displayed on the operations panel 15 by the
SAS 152.

In the main screen image, when the user selects to execute
install, the SAS 152 causes the operations panel 15 to display
an install screen image including a row including the JSDK
application 1565 as the selection candidate. The install screen
image is created based on the JSDK attribute file 156Pb
included in the JSDK file 156Fb in the SD card 805.

In step S201, the user selects a row including the JSDK
application 1565 in the install screen image, and enters an
instruction to execute install in the install screen image. The
instruction to execute install is reported to the JSDK manage-
ment unit 1551 via the SAS 152. In FIG. 8, the route via the
SAS 152 is not shown.

Next, the JSDK management unit 1551 executes an install
process of the JSDK application 1565 (step S202). Specifi-
cally, the JSDK file 156FD is read from the SD card 805 and
expanded. Furthermore, an entry including the application
identifier of the JSDK application 1565 is added to the install
information of the JSDK applications 156 managed by the
JSDK platform 155 with the use of a predetermined recording
medium. Furthermore, the JSDK application 1565, the JSDK
attribute file 156Pb, the CSDK file 153FDb, the proxy library
211, and the proxy attribute file 211P are copied to the JSDK
install area. The CSDK file 153Fb, the proxy library 211, and
the proxy attribute file 211P are recognized by the JSDK
management unit 1551 as resource files of the JSDK appli-
cation 1565. Thus, the JSDK management unit 1551 does not
execute any special process on the CSDK file 153FD, the
proxy library 211, or the proxy attribute file 211P. However,
the install operation of the proxy library 211 can be completed
by saving the proxy library 211 as a resource file of the JSDK
application 15654. That is to say, the operation of installing the
proxy library 211 is performed in association with the opera-
tion of installing the JSDK application 1565 (i.e., the proxy
library 211 is installed together with the JSDK application
156b).

When the install process ends, the JISDK management unit
1551 sends a response to the SAS 152 indicating that the
install process has ended. According to this response, the fact
that the install process has ended is reported to the user by the
SAS 152 via the install screen image (step S203).

Next, when the user selects to execute activation in the
main screen image, the SAS 152 causes the operations panel
15 to display an activation screen image. The activation
screen image includes a list of the CSDK applications 153 and

10

15

20

25

30

35

40

45

50

55

60

65

10
the JSDK applications 156 included in install information of
the CSDK application 153 or install information of the JSDK
applications 156.

The user selects a row including the JSDK application
1564 included in the activation screen image, and enters an
activation instruction in the activation screen image (step
S204). The activation instruction is reported to the JSDK
management unit 1551 via the SAS 152.

Next, the JSDK management unit 1551 enters a request to
activate the JSDK application 1565 (step S205). In response
to the activation request, the JSDK application 1565 is acti-
vated as a thread on the JVM 154 (step S206). The JSDK
application 1565 loads the proxy library 211 inthe RAM 112,
and calls a predetermined method (or function) in the Java
(registered trademark) layer 2115 of the loaded proxy library
211 (step S207). That is to say, the proxy library 211 receives
a call from the JSDK application 156a. In response to the
proxy library 211 being loaded in the RAM 112, the proxy
attribute file 211P is also loaded in the RAM 112.

In response to the call, the proxy library 211 registers, in
the callback control unit 1552 of the JSDK platform 155,
callback information used for sending a report indicating that
the JSDK application 1565 has been uninstalled to the proxy
library 211 (step S208). That is to say, “JSDK application
1564 uninstalled” is specified as an event, and a request is
made to register callback information in which a predeter-
mined method of the proxy library 211 is specified as the
report destination (callback function). The callback control
unit 1552 stores the callback information by using, for
example, the RAM 112, and sends a response to the proxy
library 211 reporting that the callback information has been
registered (step S209).

Next, the native layer 211c¢ of the proxy library 211
executes the process of installing the CSDK application 1535,
based on the CSDK file 153Fb (step S210). Details of the
install process are described below. After the install process
has ended, the Java (registered trademark) layer 2115 of the
proxy library 211 sends, to the JSDK application 1565 that is
the call source, a response indicating results of the install
process (step S211). Next, the JSDK application 1565 returns
the function of controlling processes to the JSDK manage-
ment unit 1551 (step S212). The JSDK management unit
1551 reports, to the SAS 152, that the JSDK application 1565
has been activated. In response to the report, the SAS 152
displays a message on the activation screen image that the
JSDK application 1565 has been activated (step S213).

As described above, in the second embodiment, in
response to the JSDK application 1565 being activated, the
proxy library 211 automatically executes the operation of
installing the CSDK application 1534.

When the SDK application B1 becomes unnecessary, the
user selects to execute uninstall in the main screen image. The
SAS 152 causes the operations panel 15 to display an unin-
stall screen image. The uninstall screen image includes a list
of'the CSDK applications 153 and the JSDK applications 156
included in the install information of the CSDK applications
153 or the install information of the JSDK applications 156.

The user selects a row of the JSDK application 1565
included in the uninstall screen image, and enters an uninstall
instruction via the uninstall screen image (step S221). The
uninstall instruction is reported to the JSDK management unit
1551 via the SAS 152.

In response to the uninstall instruction, the JSDK manage-
ment unit 1551 enters a request to abort the JSDK application
15654 (step S222). In response to the abort request, the thread
relevant to the JSDK application 156a ends (step S223). Next,
the JSDK management unit 1551 executes a process to unin-

US 9,274,776 B2

11

stall the JSDK application 1565 (step S224). For example, the
entry of'the JSDK application 1565 is deleted from the install
information of the JSDK applications 156 managed by the
JSDK platform 155. Furthermore, the JSDK application
1565, the JISDK attribute file 156Pb, the CSDK file 153Fb, the
proxy library 211, and the proxy attribute file 211P that have
been copied to the JSDK install area are deleted.

Next, in response to the JSDK application 1565 being
uninstalled, the callback control unit 1552 of the JSDK plat-
form 155 calls a callback function specified in the callback
information registered at step S208 (step S225). The callback
function is a predetermined method of the Java (registered
trademark) layer 211 of the proxy library 211. Thus, the
predetermined method is called. As a result, it is reported to
the proxy library 211 that the JSDK application 1565 has been
uninstalled. In step S224, the module file of the proxy library
211 is deleted; however, the contents of the module file and
the proxy attribute file 211P are loaded in the RAM 112. Next,
the native layer 211c¢ of the proxy library 211 executes the
process of uninstalling the CSDK application 1535 (step
S226).

After the uninstall process, the Java (registered trademark)
layer 211; of the proxy library 211 returns the function of
controlling processes to the callback control unit 1552 that is
the call source (step S227). Next, the JSDK management unit
1551 reports to the SAS 152 that the JSDK application 1565
has been uninstalled. In response to the report, the SAS 152
causes the uninstall screen image to display the effect that the
JSDK application 1565 has been uninstalled (step S228).

As described above, in the second embodiment, in
response to the JSDK application 1565 being uninstalled, the
proxy library 211 automatically executes the process of unin-
stalling the CSDK application 1534.

Next, a description is given of details of step S210 in FIG.
8. FIG. 9 is for describing an example of processing proce-
dures of a process of installing a CSDK application per-
formed by the proxy library 211. In the description of FIG. 9,
the native layer 211¢ of the proxy library 211 is referred to as
the proxy library 211.

In step S301, the proxy library 211 determines whether the
CSDK application 1534 that is the install target is already
installed in the image forming apparatus 10. The determina-
tion is made by comparing or cross-checking the proxy
attribute file 211P with the install information of the CSDK
applications 153 managed with the use of the NVRAM 115.

FIG. 10 indicates an example of information recorded in
the proxy attribute file 211P. As shown in FI1G. 10, in the proxy
attribute file 211P, the model name, the application identifier,
and the CSDK file name are recorded for each model of the
image forming apparatus 10 into which the CSDK applica-
tion 1535 can be installed.

The model name is the name of the model of the image
forming apparatus 10. The application identifier is the iden-
tifier of the CSDK application 1535. Even when the same
function is implemented by two CSDK applications 1535,
different application identifiers are given to these two CSDK
applications 1535 if the contents of the files are different
depending on the model type. The CSDK file name is the
name of the CSDK file 153Fb. FIG. 10 shows an example in
which a common CSDK file 153FDb is applicable to different
model types. Therefore, a common application identifier cor-
responds to different model types.

When different CSDK files 153Fb are to be applied accord-
ing to the model type, the application identifiers and CSDK
file names are different. In this case, the JSDK file 156Fb
includes plural CSDK files 153Fb.

10

15

20

25

30

35

40

45

50

55

60

65

12

In step S301, it is determined whether a particular applica-
tion identifier is included in install information of the CSDK
applications 153 managed with the use of the NVRAM 115.
Specifically, the particular application identifier means the
same application identifier as the application identifier in the
proxy attribute file 211P associated with the model name of
the image forming apparatus 10 that is the install destination.
When the corresponding application identifier is included in
the install information of the CSDK applications 153, the
proxy library 211 determines that the CSDK application 1535
is already installed, and normally ends the process of FIG. 9.
Thus, in this case, the process of installing the CSDK appli-
cation 15354 is not executed.

When the corresponding application identifier is not
included in the install information of the CSDK applications
153, the proxy library 211 determines that the CSDK appli-
cation 1535 is not yet installed. Next, the proxy library 211
determines the CSDK file name corresponding to the model
name of the image forming apparatus 10 that is the install
destination, based on the proxy attribute file 211P (step
S302).

When the CSDK file name corresponding to the model
name of the image forming apparatus 10 that is the install
destination is not recorded in the proxy attribute file 211P, the
proxy library 211 abnormally ends the process of FIG. 9 (step
S305). Abnormally ending the process means to return, to the
JSDK application 1565, a report indicating that the install
process is unsuccessful.

When the CSDK file name corresponding to the model
name of the image forming apparatus 10 that is the install
destination is recorded in the proxy attribute file 211P, the
proxy library 211 determines whether the CSDK application
1534 can be installed (step S304). For example, when there is
an upper limit in the number of CSDK applications 153 that
can be installed, or when there are any other limitations, it is
determined whether the CSDK application 1535 can be
installed based on whether these upper limits or limitations
may be exceeded by installing the CSDK application 1535.

When it is determined that the CSDK application 1535
cannot be installed, the proxy library 211 abnormally ends the
process of FIG. 9 (step S305). When it is determined that the
CSDK application 1535 can be installed, the proxy library
211 executes the process of installing the CSDK application
1535, based on the CSDK file 153Fb relevant to the CSDK
file name determined in step S302 (step S304). Specifically,
the CSDK attribute file 153Pb saved in the JSDK install area
in step S202 of FIG. 8 is expanded, and the CSDK application
1535 and the CSDK attribute file 153Pb are saved in the
CSDK install area. Furthermore, an entry including an appli-
cation identifier of the CSDK application 1534 is added to the
install information of the CSDK applications 153 managed
with the use of the NVRAM 115.

When the install process is unsuccessful (for example,
when the process of saving the CSDK application 1535 in the
CSDK install area or the process of adding install information
is unsuccessful), the proxy library 211 abnormally ends the
process of FIG. 9.

Next, a detailed description is given of step S226 in FIG. 8.
FIG. 11 is for describing an example of processing proce-
dures of a process of uninstalling the CSDK application 153
performed by the proxy library 211. In the description of FIG.
11, the native layer 211c¢ of the proxy library 211 is referred to
as the proxy library 211.

In step S401, the proxy library 211 determines whether the
CSDK application 1535 needs to be uninstalled. Specifically,
for example, it is determined whether a particular application
identifier is included in install information of the CSDK

US 9,274,776 B2

13

applications 153 managed with the use of the NVRAM 115.
Specifically, a particular application identifier means an
application identifier of the CSDK application 1535 that is an
uninstall target specified in the factor of a callback function
called in step S225. That is to say, it is determined whether an
uninstall process is necessary based on whether the CSDK
application 1535 is installed.

When it is determined that an uninstall process is unnec-
essary (when the CSDK application 1534 is not installed), the
proxy library 211 abnormally ends the process of FIG. 11
(step S403). When it is determined that an uninstall process is
necessary (when the CSDK application 1535 is installed), the
proxy library 211 executes a process of uninstalling the
CSDK application 1535 (step S402). For example, the entry
of the CSDK application 1535 is deleted from the install
information of the CSDK applications 153 managed with the
use of the NVRAM 115. Furthermore, the CSDK application
1535 and the CSDK attribute file 153Pb that have been copied
to the CSDK install area are deleted.

When the uninstall process is unsuccessful (for example,
when the process of deleting the entry from the install infor-
mation or the process of deleting the CSDK application 1535
is unsuccessful), the proxy library 211 abnormally ends the
process of FIG. 11 (step S403).

As described above, according to the present embodiment,
when the JSDK application 1564 is activated, the proxy
library 211 automatically executes the process of installing
the CSDK application 1535. Furthermore, when uninstalling
the JSDK application 1565, the proxy library 211 automati-
cally executes the process of uninstalling the CSDK applica-
tion 15354.

Thus, the user does not need to perform an operation for
installing the CSDK application 1534.

Furthermore, the logic of installing or uninstalling the
CSDK application 1535 is installed in the proxy library 211
which is distributed together with the JSDK application 1565
(included in the JSDK file 156Fb as part of the JSDK appli-
cation 1565). That is to say, the logic does not need to be
installed in an existing part of the install mechanism of the
image forming apparatus 10 (such as the SAS 152 and the
JSDK management unit 1551). Accordingly, there is no need
to make corrections on existing parts of the install mechanism
of the image forming apparatus 10.

Furthermore, the CSDK application 1535 (CSDK file
153Fb)is included inthe JSDK file 156Fb as part of the JSDK
application 1565. Therefore, the SAS 152 can display the
install target as one JSDK application 1565, on the install
screen image. The JSDK management unit 1551 can take in
(save) the CSDK application 1535 (CSDK file 153Fb) in the
image forming apparatus 10, by the same process as the
process of installing the JSDK application 156a described
with reference to FIG. 5.

In the present embodiment, a description is made of an
example of simplifying the process of installing the JSDK
application 156 and the CSDK application 153. However, the
programming languages of the programs to be combined do
not necessarily need to be different. Furthermore, the present
application may also be applied to a case of combining three
or more programs. Specifically, two or more types of JISDK
applications 156 and two or more types of CSDK applications
153 may be included in the JSDK file 156Fb.

According to an embodiment of the present invention, the
operation of installing programs can be simplified.

The present invention is not limited to the specific embodi-
ments described herein, and variations and modifications may
be made without departing from the scope of the present
invention.

5

10

15

20

25

30

35

40

45

50

55

60

14

The present application is based on Japanese Priority
Application No. 2010-208213 filed on Sep. 16, 2010 with the
Japan Patent Office, the entire contents of which are hereby
incorporated by reference.

The invention claimed is:

1. A non-transitory computer-readable storage medium
with an executable install program stored therein, wherein the
executable install program instructs a processor of an appa-
ratus to execute:

receiving a call from a first program executable on the

apparatus when the first program is activated;

checking stored attribute information that indicates a cor-

respondence between multiple apparatus types and mul-
tiple programs;
identifying a second program that corresponds to the appa-
ratus based on the checked attribute information; and

inresponse to the call, installing the second program that is
used by the first program, and setting, in the apparatus,
callback information used for sending, to the executable
install program, a report indicating that the first program
has been uninstalled,

wherein the first program and the second program are

developed by different development languages, and
when executing the first program, the first program is
executed by calling a part of a plurality of program
modules to be used, from the second program.

2. The non-transitory computer-readable storage medium
according to claim 1, further comprising:

installing the executable install program in the apparatus in

association with the first program.

3. The non-transitory computer-readable storage medium
according to claim 1, further comprising:

uninstalling the second program in response to detecting

that the first program has been uninstalled.

4. The non-transitory computer-readable storage medium
according to claim 3, wherein

the uninstalling of the second program includes uninstall-

ing the second program in response to receiving the
report indicating that the first program has been unin-
stalled based on the callback information.

5. An install method executed by an apparatus, the install
method comprising:

receiving a call from a first program executable on the

apparatus when the first program is activated;

checking stored attribute information that indicates a cor-

respondence between multiple apparatus types and mul-
tiple programs;
identifying a second program that corresponds to the appa-
ratus based on the checked attribute information; and

inresponse to the call, installing the second program that is
used by the first program, and setting, in the apparatus,
callback information used for reporting that the first
program has been uninstalled,

wherein the first program and the second program are

developed by different development languages, and
when executing the first program, the first program is
executed by calling a part of a plurality of program
modules to be used, from the second program.

6. The install method according to claim 5, further com-
prising:

installing an install program in the apparatus in association

with the first program, the install program causing the
apparatus to execute the receiving of the call and the
installing of the second program.

7. The install method according to claim 5, further com-
prising:

US 9,274,776 B2

15

uninstalling the second program in response to detecting
that the first program has been uninstalled.
8. The install method according to claim 7, wherein
the uninstalling of the second program includes uninstall-
ing the second program in response to detecting that the
first program has been uninstalled based on the callback
information.
9. An apparatus comprising:
a memory that stores a program; and
a processor, coupled to the memory, that executes the pro-
gram,
wherein the program which, when executed by the proces-
sor, causes the apparatus to:
receive a call from a first program executable on the
apparatus when the first program is activated;
check stored attribute information that indicates a cor-
respondence between multiple apparatus types and
multiple programs;
identify a second program that corresponds to the appa-
ratus based on the checked attribute information; and
in response to the call, install the second program that is
used by the first program, and set, in the apparatus,
callback information used for reporting that the first
program has been uninstalled,
wherein the first program and the second program are
developed by different development languages, and
when executing the first program, the first program is

10

15

20

25

16

executed by calling a part of a plurality of program
modules to be used, from the second program.

10. The apparatus according to claim 9, wherein the pro-
gram further causes the apparatus to:

install an install program in the apparatus in association

with the first program, the install program causing the
apparatus to receive the call from the first program and
install the second program.

11. The apparatus according to claim 9, wherein the pro-
gram further causes the apparatus to:

uninstall the second program in response to detecting that

the first program has been uninstalled.

12. The apparatus according to claim 11, wherein

the uninstall includes uninstalling the second program in

response to detecting that the first program has been
uninstalled based on the callback information.

13. The non-transitory computer-readable storage medium
according to claim 1, wherein the first program is a JSDK
application and the second program is a CSDK application,
the JSDK application calling a proxy library including the
stored attribute information that includes a model name, an
application identifier of the CSDK application, and a CSDK
file name recorded for each model of an image forming appa-
ratus into which the CSDK application can be installed, and
wherein the proxy library is included in the JSDK application
as a single JAR file.

